CFD-DEM#
This subsection includes parameters related to multiphase flow simulations using the both the lethe-fluid-vans solver and the lethe-fluid-particles solver within Lethe.
subsection cfd-dem
set grad div = true
set void fraction time derivative = true
set interpolated void fraction = true
set vans model = modelA
set drag force = true
set drag model = difelice
set saffman lift force = false
set magnus lift force = false
set rotational viscous torque = false
set vortical viscous torque = false
set buoyancy force = true
set shear force = true
set pressure force = true
set coupling frequency = 100
set implicit stabilization = true
set grad-div length scale = 1
set particle statistics = true
end
The
grad div
parameter allows the enabling of the grad div stabilization for the Volume Averaged Navier Stokes equations [1]. This allows for a much better mass conservation of the system.The
void fraction time derivative
parameter allows us to choose whether or not we want to account for the time derivative of the void fraction or take it equal to zero.The
interpolated void fraction
parameter allows us choose whether the void fraction used to calculate drag is the cell void fraction or the one interpolated at the position of the particle (Using the cell void fraction to calculate drag on each particle instead of the interpolated one is currently under investigation).The
vans model
parameter allows us to choose between the vans Model A or Model B. Details about the differences between the models are provided in Lethe’s unresolved CFD-DEM theory guide Unresolved CFD-DEM.The
drag force
,saffman lift force
,magnus lift force
,buoyancy force
,shear force
, andpressure force
parameters allow us to enable or disable the respective forces in a cfd-dem simulation.
Note
By setting set saffman lift force = true
, the applied Saffman lift force model is the often called Saffman-Mei model, developed by Mei (1992) [2] as an extension of the work by Saffman (1968) [3]. A complete description of the model is provided by Crowe et al. (2010) [4].
Note
By setting
set magnus lift force = true
, the applied Magnus lift force model is detailed by Crowe et al. (2010) [4], following the recommendation of using the correlation by Oesterlé & Dinh (1998) [5] for \(1 < \Omega < 6\) and \(10 < Re_p < 140\). \(\Omega\) is calculated as:\[\Omega = \frac{d_p \omega}{2 \left | u - v \right |}\]where \(\omega\) is the angular velocity of the particle.
Warning
We do not recommend using the Magnus lift force. The Magnus lift force model does not include any angular momentum dissipation mechanism in the solid-fluid coupling. Using the Magnus force may lead to unphysical results.
The
rotational viscous torque
andvortical viscous torque
parameter controls whether the fluid-particle contact generates torque on the particles due to viscosity.
Note
When set rotational viscous torque = true
and set vortical viscous torque = true
, the applied torque (\(\bf{M}_{viscous}\)) is the one described by Derksen (2004) [6]:
where \(\bf{\omega}_f\) is the fluid vorticity at particle’s position and \(\bf{\omega}_p\) is the particle’s angular velocity. The rotational and vortical torques can be applied separately by setting one of them to false.
In case set rotational viscous torque = false
, the particle’s angular velocity \(\bf{\omega}_p\) is removed from the equation.
In case set vortical viscous torque = false
, \(0.5 \bf{\omega}_f\) is removed from the equation.
Warning
We do not recommend the use of vortical viscous torque
with coarse meshes, especially when Q1 elements are used. In such case, the space resolution may not be enough to properly capture vorticity.
Since the viscous torque model is not complete without the vortical component, rotational viscous torque
should be used with caution.
The
drag model
parameter allows one to choose the type of drag model to be implemented for the calculation of the drag force between the particles and the fluids. Given \(F_d = \beta (\bf{u} - \bf{v})\), the available drag models at the time are:
Drag model |
Drag coefficient, \(\beta\) |
Parameter |
---|---|---|
Di Felice [7] |
\(\beta = \frac{\pi d_p^2}{8} \rho_f \left | \bf{u} - \bf{v} \right | \left( 0.63 + \frac{4.8}{\sqrt{Re_p}} \right)^2 G\), where \(G = \varepsilon_f ^ {-\left[ 3.7 - 0.65 exp \left( - \frac{\left( 1.5 - log_{10} Re_{p} \right)^2}{2} \right) \right]}\) |
|
Rong [8] |
\(\beta = \frac{\pi d_p^2}{8} \rho_f \left | \bf{u} - \bf{v} \right | \left( 0.63 + \frac{4.8}{\sqrt{Re_p}} \right)^2 G\), where \(G = \varepsilon_f ^ {-\left[ 2.65 \left( \varepsilon_f + 1 \right) - \left( 5.3 - 3.5 \varepsilon_f \right) \varepsilon_f^2 exp \left( - \frac{\left( 1.5 - log_{10} Re_{p} \right)^2}{2} \right) \right]}\) |
|
Dallavalle [9] |
\(\beta = \frac{\pi d_p^2}{8} \rho_f \left | \bf{u} - \bf{v} \right | \left( 0.63 + \frac{4.8}{\sqrt{Re_p}} \right)^2\) |
|
Koch and Hill [10] |
\(\beta = \frac{18 \mu \varepsilon_f^2 \left( 1 - \epsilon_f \right)}{d_p^2} \left( F_0 + \frac{1}{2} F_3 Re_p' \right) \frac{V_p}{\left( 1 - \varepsilon_f \right)}\), where \(Re_p' = \frac{\varepsilon_f \rho_f \left | \bf{u} - \bf{v} \right |}{\mu}\) \(F_0 = \left\{\begin{matrix} \frac{1 + 3 \sqrt{\left ( 1 - \varepsilon_f \right )/2} + 135/64 \left ( 1 - \varepsilon_f \right ) ln\left ( 1 - \varepsilon_f \right ) + 16.14 \left ( 1 - \varepsilon_f \right )}{1 + 0.681 \left ( 1 - \varepsilon_f \right ) - 8.48 \left ( 1 - \varepsilon_f \right )^2 + 8.14 \left ( 1 - \varepsilon_f \right )^3}\textrm{, for } \varepsilon_f > 0.6 \\ 10 \left ( 1 - \varepsilon_f \right )/\varepsilon_f^3 \textrm{, for } \varepsilon_f \leq 0.6 \end{matrix}\right.\) \(F_3 = 0.0673 + 0.212 \left ( 1 - \varepsilon_f \right ) + \frac{0.0232}{\varepsilon_f^5}\) |
|
Beetstra [11] |
\(\beta = \frac{\pi d_p^2}{8} \rho_f C_d \left | \bf{u} - \bf{v} \right |\), where \(C_d = \frac{24}{Re_{p}}\left [ 10 \frac{1-\varepsilon_f}{\varepsilon_f^{2}} + \varepsilon_f^2 \left ( 1 + 1.15\sqrt{1 - \varepsilon_f} \right ) \right ] +\) \(+ \frac{0.413}{\varepsilon_f^2} \left [ \frac{\varepsilon_f^{-1} + 3 \varepsilon_f \left ( 1 - \varepsilon_f + 8.4 Re_p^{-0.343} \right )}{1 + 10^{3\left ( 1 - \varepsilon_f \right )} \cdot Re_p^{\frac{\left [ 1 + 4 \left ( 1 - \varepsilon_f \right ) \right ]}{2}}} \right ]\) |
|
Gidaspow [12] |
\(\beta = \left\{\begin{matrix} 150 \frac{\left (1 - \varepsilon_f \right )}{\varepsilon_f^2} + 1.75 \frac{Re_p}{\varepsilon_f}\textrm{, for } \varepsilon_f < 0.8 \\ 18 \varepsilon_f^{-3.65} \left ( 1 + 0.15 \left ( \varepsilon_f Re_p \right )^{0.687} \right )\textrm{, for } \varepsilon_f \geq 0.8 \end{matrix}\right.\) |
|
The
particle statistics
parameter, when enabled, outputs statistics about the particles’ velocity, kinetic energy, and the amount of contact detection.The
coupling frequency
determines the number of DEM iterations per 1 CFD iteration.
Note
The coupling frequency
parameter is used to calculate the dem time step as it is not explicitly determined in the parameter file. It is calculated as:
The
implicit stabilization
parameter determines whether or not we calculate the \(\tau\) for the SUPG/PSPG stabilization and the \(\gamma\) for the grad-div stabilization using the current velocity (implicit stabilization) or the velocity at the previous time step (explicit stabilization). By default, this is set to true. If difficulties are encountered in the convergence of the non-linear solver, a good practice is to set this to false.The
grad-div length scale
parameter determines the value of the length scale constant \(c^*\) in the calculation of \(\gamma = \nu + c^* \mathbf{u}\).
Tip
Experience shows that simulations are more numerically stable when the grad-div length scale
is of the same length as the characteristic length of the flow. For example, for a pipe, the recommended value for the grad-div length scale
would be the pipe’s diameter.
[1] B. Blais et al., “Lethe: An open-source parallel high-order adaptative CFD solver for incompressible flows,” SoftwareX, vol. 12, p. 100579, Jul. 2020, doi: 10.1016/j.softx.2020.100579.
[2] R. Mei, “An approximate expression for the shear lift force on a spherical particle at finite reynolds number,” Int. J. Multiph. Flow, vol. 18, no. 1, pp. 145–147, Jan. 1992, doi: 10.1016/0301-9322(92)90012-6.
[3] P. G. Saffman, “The lift on a small sphere in a slow shear flow,” J. Fluid Mech., vol. 22, no. 2, pp. 385–400, Jun. 1965, doi: 10.1017/S0022112065000824.
[4] C. T. C. Tsuji John D. Schwarzkopf, Martin Sommerfeld, Yutaka, Multiphase Flows with Droplets and Particles, 2nd ed. Boca Raton: CRC Press, 2011. doi: 10.1201/b11103.
[5] B. Oesterlé and T. B. Dinh, “Experiments on the lift of a spinning sphere in a range of intermediate Reynolds numbers,” Exp. Fluids, vol. 25, no. 1, pp. 16–22, Jun. 1998, doi: 10.1007/s003480050203.
[6] J. J. Derksen, “Numerical simulation of solids suspension in a stirred tank,” AIChE J., vol. 49, no. 11, pp. 2700–2714, 2003, doi: 10.1002/aic.690491104.
[7] R. Di Felice, “The voidage function for fluid-particle interaction systems,” Int. J. Multiph. Flow, vol. 20, no. 1, pp. 153–159, Feb. 1994, doi: 10.1016/0301-9322(94)90011-6.
[8] L. W. Rong, K. J. Dong, and A. B. Yu, “Lattice-Boltzmann simulation of fluid flow through packed beds of uniform spheres: Effect of porosity,” Chem. Eng. Sci., vol. 99, pp. 44–58, Aug. 2013, doi: 10.1016/j.ces.2013.05.036.
[9] W. Sobieski, “Drag Coefficient in Solid–Fluid System Modeling with the Eulerian Multiphase Model,” Dry. Technol., vol. 29, no. 1, pp. 111–125, Dec. 2010, doi: 10.1080/07373937.2010.482714.
[10] D. Jajcevic, E. Siegmann, C. Radeke, and J. G. Khinast, “Large-scale CFD–DEM simulations of fluidized granular systems,” Chem. Eng. Sci., vol. 98, pp. 298–310, Jul. 2013, doi: 10.1016/j.ces.2013.05.014.
[11] T. M. J. Nijssen, H. A. M. Kuipers, J. van der Stel, A. T. Adema, and K. A. Buist, “Complete liquid-solid momentum coupling for unresolved CFD-DEM simulations,” Int. J. Multiph. Flow, vol. 132, p. 103425, Nov. 2020, doi: 10.1016/j.ijmultiphaseflow.2020.103425.
[12] F. Marchelli, Q. Hou, B. Bosio, E. Arato, and A. Yu, “Comparison of different drag models in CFD-DEM simulations of spouted beds,” Powder Technol., vol. 360, pp. 1253–1270, Jan. 2020, doi: 10.1016/j.powtec.2019.10.058.