Origin of the Finite Element Formulation#

This section describes the FEM formulation used within Lethe. Starting from the strong form of the equations, we obtain the weak-form. We then briefly discuss the challenges associated with solving the Navier-Stokes equations before we introduce the two approaches that are available in Lethe to solve them.

Starting from The Incompressible Navier-Stokes equations:

\[ \begin{align}\begin{aligned}\partial_l u_l &= 0\\\partial_t u_k + u_l \partial_l u_k &= -\frac{1}{\rho} \partial_k p^* + \nu \partial_l \partial_l u_k + f_k\end{aligned}\end{align} \]

We consider a domain \(\Omega\) of contour \(\Gamma\). Without loss of generality, we assume Dirichlet boundary conditions or zero stress conditions on \(\Gamma\). We multiply by two test functions \(q\) and \(\mathbf{v}=v_k\) for pressure and velocity respectively and integrate over the domain \(\Omega\). The resulting set of equation is:

\[\begin{split}&\int_{\Omega} q \partial_l u_l d\Omega =0 \\ &\int_{\Omega} v_k \left(\partial_t u_k+ u_l \partial_l u_k + \partial_k p - \nu \partial_l \partial_l u_k - f_k \right) d\Omega =0\end{split}\]

Because we want the pressure to be in \(\mathcal{L}^2\) and the velocity to be in \(\mathcal{H}^1\), we integrate by parts the viscous stress and the pressure gradient terms. We thus obtain the weak form:

\[\begin{split} &\int_{\Omega} q \partial_l u_l \mathrm{d}\Omega =0 \\ &\int_{\Omega} v_k \left(\partial_t u_k+ u_l \partial_l u_k - f_k \right) \mathrm{d}\Omega \\ & - \int_{\Omega} \left( \partial_k \right) v_k p \mathrm{d}\Omega + \nu \int_{\Omega} \left( \partial_l v_k \right) \left( \partial_l u_k \right) \mathrm{d}\Omega \\ & + \int_{\Gamma} \left( v_k \right) \left(- \partial_l u_k +\delta_{lk} p \right) n_l \mathrm{d}\Gamma =0\end{split}\]

where \(\delta_{lk}\) is the Kronecker delta and \(n_l\) is the outward pointing normal vector to a surface. Since we assume Dirichlet boundary conditions or zero stress conditions on \(\Gamma\), this term may be discarded. Thus, when no boundary condition is applied, the boundary condition applied is:

\[\int_{\Gamma} \left( v_k \right) \left(- \partial_l u_k +\delta_{lk} p \right) n_l \mathrm{d}\Gamma=0\]

which can be seen as an outlet boundary condition where the normal stress is zero. In essence, this can be used to approximately impose an outlet boundary condition with a zero average pressure. This weak form is non-linear because of \(u_l \partial_l u_k\) term.

Solving the Non-linear Problem#

To solve non-linear problem, Lethe uses the Newton-Raphson method. This method proceeds by solving recurrently for the correction vector \(\mathbf{\delta x}\) which is obtained by solving the following system:

\[\mathbf{\mathcal{J}} \mathbf{\delta x} = - \mathbf{\mathcal{R}}\]

For the incompressible Navier-Stokes equation, this leads to a saddle point problem of the form:

\[\begin{split}\mathbf{\mathcal{J}} &= \left[ \begin{matrix} A & B^T \\[0.3em] B & 0 \end{matrix} \right] \\ \mathbf{\mathcal{R}} &= \left[ \begin{matrix} \mathbf{\mathcal{R}}_v \\[0.3em] \mathbf{\mathcal{R}}_q \end{matrix} \right]\end{split}\]

The residual is:

\[\begin{split}\mathbf{\mathcal{R}} &= \int_{\Omega} q \partial_l u_l \mathrm{d}\Omega + \int_{\Omega} v_k \left(\partial_t u_k+ u_l \partial_l u_k - f_k \right) \mathrm{d}\Omega \\ & - \int_{\Omega} p\left( \partial_k v_k\right) \mathrm{d}\Omega + \nu \int_{\Omega} \left( \partial_l v_k \right) \left( \partial_l u_k \right) \mathrm{d}\Omega\end{split}\]

We recall that in FEM, the pressure \(p\) and the velocity \(u_k\) are obtained from the discrete nodal values from the following:

\[\begin{split}p &= \sum_j p_j \psi_{j} \\ u_k &= \sum_j u_{k,j} \phi_{k,j} \\\end{split}\]

where \(\psi_j\) is the \(j\) interpolation function for pressure and \(\phi_{k,j}\) is the \(j\) interpolation function for the \(k\) component of the velocity. \(p_j\) is the nodal value of pressure and \(u_{k,j}\) is the nodal value of the \(k\) component of the velocity.

The Jacobian is:

\[\begin{split}\mathbf{\mathcal{J}} &= \int_{\Omega} q \partial_l \phi_{l,j} \mathrm{d}\Omega + \int_{\Omega} v_k \left(\partial_t \phi_{k,j}+ \phi_{l,j} \partial_l u_k + u_l \partial_l \phi_{k,j} \right) \mathrm{d}\Omega \\ & - \int_{\Omega} \psi_j \left( \partial_k v_k \right)\mathrm{d}\Omega + \nu \int_{\Omega} \left( \partial_l v_k \right) \left( \partial_l \phi_{k,j} \right) \mathrm{d}\Omega\end{split}\]